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Oscillator strengths have been computed for the 1lS-n1P

series of Hel. The computations were carried through with
wave functions determined by the minimum principle and
employed central field functions and configuration interaction.
The agreement between the c¢scillator strengths as computed‘by
the length, velocity, and zcceleration expressiohs and the
agreement between the present work and the very expensive
computations of Schiff and Pekeris for the trénsiﬁions

113-21P and 118-31P give confidence in the effectiveness of
ﬁhe method and thevdependability of the4results.
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Introduction

For any relatively complste, quantitative interpretation
of astronomical spectra, it is essential to have available the
relevant transition probabilitieé. To obtain dependable'
transition probabilities theoretically, it is necessary to
employ wave functions of considerable accuracye. This requirement
follows from the sensitivity of thé transition probabilitiés
to the form of the wave function, particularly to the positions

: 5,2,3.4
of the zeros.

1&D.ﬁ. Bates, Proc. Roy. Soc., London, A, 188, 350 (1947).

2 1.C. Green and K.E. lieber, Astrophys. J., 111, 582 (1950).

3 A. Delgarno and N. Lynn, Proc. Phys. Soc. (London) A70, 802 (1957). |

p, Delgarno and A.E. Kingston, Prod. Phys. Soc. {London)
72, 1053 (1958).

For two-electron atomic systems, it is well known that
either of two closely related methods, that of Hylleraas,which
employs the interelectron distance, rj,, and that of Pekeris,

: 5
which employs perimetric coordinates, can give excellent results.

S 1.c. Green, E.K. Kolchin and N.C. dohnsom, Phys. Rev.

This paper gives numerous references to the earlier literature,
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Unfortunately neither of these procedures seems appropriate
for more complex systems. In the case of the Hylleraas method,
the number of ‘ij'e increases rapidly with the nﬁmber of
electrons and the space must be repeatedly divided to deal with
the integrals involving them, On the other hand, there is no
known way of extending thé method of perimetric coordinates to
deal with three or more electrons.

In contrast, the experimental Spectroscopists have had
remarkable success in analyzing even the most complex spectra
in the first approximation in terms of central field wave functions.
The method of configuration interaction is available for carrying
the treatment to a higher approximation. The presént work is
the fesult of the deciéion to push the configuration interaction
approach furtﬁer and to applf it to two-electrbn‘syStems where
its results can be compared with those from other metﬁods.
Among the twoeelectron épectra, Hel was chosen because of its
astrophysical importance and because of the extent of. the
experimehtal infbrmatioh available.

The liave Functions

Inegardless»of which of the above methods
is employed, one can use the energy integral and the minimum
principle to choose the values of arbitrary parameters which
have been introduced into the wave functions. In the_present

case, the trial variational function has been given the form,

‘j;%« = ZZ. akj?k (1)
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Here n is the value of the principal quantum xiumber of the
running electron in ﬁhichever series of terms is being considered,
For -example, in the case of the ABP term which arises from the
1shp configuration, n would be 4. L in Eqe. (1) is the total
orbital angular momentum quantum number for the series and the

' fk's are defined by the equation,

g Z clu. ,¢c {2)
where the /@i 8 are linear combinations of normalized anti-
symmetrized products of Slater orbitals. The orbitals are
chosen so that Msz-o and ML--O for each product. Clebsch=Gordon
coefficients are employed to assign weights to these products
such that their linear combinations have the correct spin and
angular dependence for eigeni‘unctions in LS=coupling. The ﬁi's

therefore have the form,

p=2] 0G5, )2 o2, m)-

M""

/VcA [hl %f‘ ("" ma‘n ) Y(QUM‘JGU?) S(M‘A:f)
/lz‘ K (-E%A,_) Y().;_,-m;-)en}a;) SG‘“‘A} 2)}}3)

Here 'Qi and A i are the orbital angular momentum quantum
numbers of the two electrons with £ iﬁ A 4» the C's are the
ClebscheGordon coefficients, N is the normalization constant

for the antisymmetrized product which f‘ollows; (‘/4 is the
antisymmetrizer operator; the Y's are surface spherical harmonics

and the &'s are Kroeneker deltas, employed here as spin functions,
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to,

A
The a; s and b 's are integers, Z is an arbitrary constant

i

which is usually set equal to the nuclear charge, the h«

. ,
Ngy 8 are the principal quantum numbers of the two electrons,

T L4
the x; s and p; s measure the strength of the "effective nuclear

4
1 s and

charge” for each electron, that is,; the nuclear charge minus
the screening due to the cther electron.

The adjustable paraméters fall into two classes, those
which enter the wave function linearly and tgife which do not.

L 4

The'ck's and cki's are in the first class andnai's, b, s,

i
digs and pi'a in the second. One of the advantages of the method
of cénfiguration interaction is that the results of the
experimental spectroscopists and physical intuition suggest
initial trial values for the non-linear parameters. These
initial values can then be rafined rather quickly by trial and
error or more systematic procedures.

For fixed values of the non-linear parameters, the
conditions fof a minimum yield in the case of the wave function

for the lowest member of any series,.E§L+1, the set of homo=~

gengous linear equations,

QZ-QW (Heg -M;2) = 0 (4)

. where

H‘:’; = 550? H}‘-:‘ dr  omd Ni,é “j}L?Fz'JT’

and Ais a Lagrangian multiplier which introduces the

(5)

auxiliery condition that.ga*l is normalized. To obtain non=-

trivial values for the cij's,_one finds the lowest elgenvalue of A




A

F

F, the secular determinant

| Hij - Negr|= 0 (6)

This eigenvalue is also the energy to be associated with the

lowest term of the series.

6 For a discussion of the application of variational methods
to the determination of eigenvalues and eigenfunctions, see
numerous textbooks on quantunm mechanics; for example, L. Pauling
and E.B. Wilson, Introduction to Quantum Mechanics (leGraw-Hill
Book Coe., Inc., New York, 1935).

3

When sets of non-linear parameters have been found which
give an energy satisfactorily close to the observed, the
¢141, j"s are found and the whole -Q—L'*l: ,@"Lﬂ i;s frozén.
For }&;2, one writes

: ﬁ'f'l = .é.tfi +Cus2 (‘z cu-z,i%i) (7)

The same procedures as before are now repeated with a new choice

of non-linear parameters in the jéi's' and use of the second
eigenvalue of the new secular determinant. The above process
is continued until as many __@;,'s have been found as the number

of terms which are being considered in the particular series.

m=-1

jZM=Z cafr + cu(len: i) (8)
R=L+ §
If N is the value of n for the highest series member of

interest, one may urite

4

fn =Z 'ché'h (9)

k= L+l



8.

and, as a possible final step, one may find the first N
elgenvalues of the associated (N~Lx{N<lL} secular determinant
where the various.giis are taken as fixed. Since it would be
possible to use a wide variety of arbitrarily chosen functions
for the.ﬂi's, subject to only a rather small number of not
very restrictive conditions, the whole calculation may be
thought of as starting with Eq. (9) with the & 's given.
Nevertheless, in view of the way in which the_@i's were chosen,
4t is clear that theé ck's for any k>n should be small. This
in fact proves to be the case and indeed the energies as

calculated with the wave functions of Eqs. {8) and (9) never

differ by as much as l-:lO"6 rydbergs, that is, by as much as 0.1 cm

-1

*
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The Expression for the Matrix Elements

More specifically, Hij in Eq. (5) will be a sum of four
terms in the general case. If we omit the Clebsch-Gordon
coefficients, the spin factors and the normalization constant

N, a typical member of these four terms will have the form

& =:I<Q£Kh[‘2(ﬁ§:ﬂg+“£%:A;2]h?ﬂ¢%)/?Ibﬂugﬁzdh))ﬂﬁALfMﬂjelda)'

H‘fea-uy\{z(-un +.&,n;_]/; a;;za)’( ™4 ,,;o.))’(/\“ - 2,;03)}&:'

Mga

(10)

» 20 ]
where H “’E e’ M A me A&(’”‘“B‘ éB)+m‘9 é/o. *

377:1 zﬁ*’ﬁ‘[mezae (58235 )+ 275 é}f’,,
-ZZ[::*‘ Zhﬂi /(h:f‘*) '}}o)ﬂh)’&) z)}oz)]g (11)

and P

A7 = an6,d0,dp,dn, e d,dB,dp da, (12)
In Eq. (11), M is the nuclear charge. It is to be noted that
Z is arbitrary but is usually set equal to i while the choice
of the;x's and P's for a wave function is being made. When the
choice is made, Z may be varied to insure that the Virial
Theorem is satisfied. In those cases in which this variation
was actually made, the best value of Z was found to differ byuﬂuub
eaé§:3 0001 from M and the energy was changed by less than
0.000001 rydbergs.
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If we let x ga"‘}a{DYsb‘;'é“ ba-,us-d‘- +c(1-am1Vg §£+ ﬁaa

the velus of the integral in Eg. {10) may be written in the form

d- ,“ — [S(QL,QQS § Cmizneg) S, 03+
{(«ﬁ +p{) X bhe, - 20 (D 4 +logCey n)-—ﬂfﬂéuﬁ—fl-ﬁg-ﬂ
i b A0ur B
+zz{§(& %) §(miymny) SO, hQM[Q‘;* e + xﬂ QPL']

"Z [ﬁk(ﬁi,m»gé»”“i)ck("g,“'a )i, )
K= R pwm

o{B(u,m', Xx-R~1, u+ R) +B(mu,y-k- ‘)X*K)}] }]

(13)

where k ,, 1is the larger of N;—ﬂé\ and |A.- )\6‘ and k.. 1s the

smaller of £ iy end A+ '\'an In Bq. (13), the c5s have the form ¥3

7 EoUo Condon end G.H. Shortley, The Theory of Atomic Spectra

(Cambridge University Press, Lendon, 1935).
?3‘ .Co Slater, Quantum Theory of Atomic Structure (McGraw-Hill

Book Co. Ine., New York, 1960).

M me, 0, m) = | S J)’(ﬂ,mge 0 Y G, 5 8,20 Y(Gj 58, f)me(ﬁd/a (1)
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 20: +1 (g‘lMc)l v (k~lm;—ma“).’ 20+ (fg—lm!l)'
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L Ime]  lmi-mei] o Vgl
. ¢ T4 LR
L I;;Z; | F; 83. an ©dB

(15)

The integral in Eq. (15) is 0 if £, k and fé do not satisfy
the inequalities and sum conditions for the sides of a tri=
angle of even perimeter. If they do, we have

1( [am | [ - A\
]; P.Qz PR Ba /.LW.SAQ

2(_‘)4 h-w (bfm)‘(B&-ur)'(z,,_zs)l ol
(b‘”)‘(A D (s-)'(a-8)! arr)!

z(_ * (Sruw+s)! (pr85-uw-2)I

tz0 i‘.(_&-u—I)!(b-S{-u{-ﬁ').(5-w'—t)f
(16)

where s = %(Q + k +Q ), u is the largest of |m;|, |m; - m |

and lm{ _§ is the subscmpt corresponding to u, h is the

larger of the two remaining subscripts, v is the superscript
corresponding to b, S5 1s the remaining subsecript, w is the
remaining superscript, and tmax is the smaller of 5 - and f - U,

The B's in Eg. {13) have the form,
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Zeh -0, ~AFA
Blus, py9) = [ [ "™ 004 b dn, o, (17)

For p20, q2 0, u= 0 and v 0, one has "

? S.F. Boys, Proc. Roy. Soc. London, A 201, 125 (1950).

| 5 +q-a) i
ohp=l
B, ””?) Ao Lgild‘ o w e p) PrgEra
(18)
On the other hand, for p =<1, q 2Jp[~/, u2 0, v= 0, one

can show that

- fpl=t it WA
B(“, )l';%) n_q,‘_ I( ) m-!— ™ +
+I I~ )R4 Alnl= k
kel (ipt-k) (lw~!)‘

414 1)
- a*(m-0) |
{‘-S(% - ')}Ar’ Z (m+ipi-1)! Angr) } (9.1)

m o !
Blunyp,a) = Z ar? (A -fpD! (192)
T L AT Gy D

The of?'s are multiplied by products of Clebsch-Gordon

coefficients,

M.E. Rose, Anguler Momenium (John Wiley and Sons, Inc.,
New York, 1857), p. 39.
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.L
A-an (PEX-L)E(2-2+1)! (—ﬂh\ﬂ)'}
A [
C'(,(’)),L)Mt) -(.l) [.}'(2“") (,u-,u—l.%—l)‘
) |
[(2-m) ! (24 ma)! (A -an) ! (Atandt]
G QLem—23)! (2-m+2)!
V' (-2ea+L-2) (-2) (L) +)!

y=x-4 (20)

where ﬂ < )\. Finally the spin factors must be taken into account.
The Ny 4's in Eq. (5}, like the Hij's, will be a sum of four

terms in the general case. If we again omit the Clebsch-Gordon

coefficients, the normalizztion constant, N, and the spin factors;

a typical member of these four terms will have the form

{

% x+§+2 S(gt; )S(M‘JMQ)S(AL,A ) X. L (21)

WX gyttt
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Results

Table I gives the computed energies expressed in rvdbergs
for the various members of the IS, 38, 1P,.BP,,]-D and 3D series,

5

This table has been presented elsewhere” but is repeated here

for completeness. The column headed AE gives the difference

in millionths of a rydberg, that is, roughly in units of .1 cm’l,
between the experimentally determined energies and those
calculated in the present work. For the 113, 215 and 235 the
experimental.valueé have been replace? Py these values with the

, Mens et et .
relativistic, radiative angeaszzzsa:quaw*wfwusf: effects as

given by C.L. Pekeris removed.” The column headed AEp gives

i ¢,L, Pekeris, Phys. Rev., 112, 1649 (1958), Phys. Rev.,
115, 1216{(1959), Phys. Rev., 126, 1470 (1962).

the similar difference between the experimental energies, or
in the case of 113, 218 and 238 the modified experimental values,
and the energies fbund\by C.L. Pekeris using the method of
perimetric coordinates.

It appears from an examination of Table I that the present'
work reaches a rather substantial degree_of accuracy in reproy

ducing the observed energieso For the more highly excited states,
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the energies found here are the lowest so far obtained by the
minimum principle. It is to be expected that the wave function
will improve as the difference between the observed and the
calculated energy decreases. .Unfortunately it is not clear
that the improvement in the wave function préceeds at the same
rate as the improvement in the energy representation.

In view of this uncertainty as to fhe quality of the wave
functions and the sensitivity of the oscillator strengths to
the precise form of the wave functions, which was mentioned
above, it is very desirable to compute f-values from each of
the three alternative expressions, that is, in terms of the

2.
dipole length, velocity, and acceleration.

12 Se Chandrésekl;xér, Astrophys. Jd,, 102, 223 (1945).

For two-electron systems, these expressions take the fbrmta

13 | | '
B, Schiff and C.L. Pekeris, Phys. Rev., 134, A638 (1964).

BN

ge"’ 2(E. - E.) l [f.:f (3.*- 3) fu dr lz (22.1)
gg_g EM,Z— £, [fm’ 3 %@)g’mdr )Z . {?2"2)

‘ 2
fo (EM, (B ~Eu)? ZM;(%*%M“‘W} (22.3)

where atomic units are used throughout and Z is the atomic number.
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Ifﬂgis which are exact solutions of a Schrddinger equation
are substituted intc these exbressions,the three computed
f-values will be the same. If the solutions are only approximate,
the differences between the computed results should decrease
as the accuracy of the wave functions increases. However,
exact agreemaht of the three computed f-values insﬁres the
rhysical significance of the results only if the wave functions
which are employéd are. solutions of a Schrddinger equation
which‘adequately represents the physical probleme In the
present case, the relativistic, radiative, aﬁzzggésaaas
dmmmte effects have been neglected, but these effects are
probably small so that the extent of the agreement of the
results from the three expressions for the oscillator strength
can be taken as a measure of the degree of confidence which
can be placed in their physical significance, |

Table II gives the oscillator étrengths for the lls-an
series of Hel as computed from the three expressions in Eq. (QZ).
The first column specifies which of the three eﬁuations was
employed. The second column gives the value of the principal ;
quantum number of the seric¢s electron in the usual spectroscopic
description of the sefies. Column three gives the results of

N
the present work, column four the results found by Trefftz et al,

Iqu Trefftz, A. Schliiter, K.-H. Dettmar and K. Jorgens,
Z, Astrophys. A4k, 1{1957).
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3
column five the results of Schiff end Pekeris snd column six

5
the results for hydrogen as quoted by Bethe and Selpeter,

/5 H.A. Bethe and E.E. Salpester, Handbuch der FPhysik, (Springer-Verlag,

Berlin, 1957), Vol. 35, p. 351.

(4
from the work of Harriman'

I 5 4. Barriman, Phys. Rev., 101, 594 (1956).

and as computed from the matrix elements given by Green et Slalq

igLoCa Green, P.P. Rush and C.D. Chandler, Astrophys. J. Supplement

Series 3, 37 {1957).

Perhaps the most sncoureging aspect of Table II from ths point of
view of the pressnt work is the fact that the oscillator strengths computed
from the Vdipols acceleration expreasion are in reasonably good agreement

2,18
with the results from the other two expressions. Experience in the paa_tz"

”A,w, Weiss, Astrophys. J., 138, 1262 (1963),

has largely shown that ithe length and velocity expraesions, which
weightg the wave .func‘a‘:ion hzora hoavily et large and intermediate
puclear distances respectively, are in gensral in much beiter
agreement with one another than with the ecceleration expression which

weights the wave function more bsavily et small nvelear distances.
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The acceleration expression may in fact differ by more than an oxrder
of megnitude from the othsr %wc., Chandrasexhar 1z pointed out long
ego that the main contribution to the energy integral comes from
intermediate nuclear distances so that the use of the minimum

principle determines ths wave function best in this region.

In summery, the agreement between the computed end experimental
energies given in Tabls I, the ?agreement_ shown -in Table II between the
osci:llator strengths as computed by the length, velocity, end
ecceleration expressions in the present work aﬁd the agreement between
the present work and ths very exlensive camputetions of Schiff and
PekKeris for the transitions 1136211’ end llS=»31P meke it clear that,
at least for itwo-electron systens, the use of central field functions
end configuration interaction can give results of substantial accuracy-

It seems therefore that this msthod deserves further exploration.

 —lT

In the course of this investigation, a number of wave '}unctions of
rather high acouracy have bsen found for various excited states of
He ] and oscillater strengths £or a number of transitions in the

llSraan series have been cbiaiped,




Table I,

7

Energles of Hel in Rydbergs

AE and
experiment8l energies and the valuei computed_by the
by Pekeris respectively. S

For the 1

7

S, 235" and 35S terms, the

nlS n3s n P

n E ADE AEP E AE aEp E &E ‘aEp
1] =5.806765 =684 =0
2| =4.291875 = 7 =13 | =4:350427 =32 O =Le247563 =116 + 2
3§ =4.122519 = 2 =33 | «4.137365 <13 0] ~4J210250 « 41 1
L{ =4 067164 =« 10 48 | «4.073016 <10 « 2| «,,062118 « 21
5] «keO42348 « 6 =531 «4,045233 =6 « 2! «4.039800 =11
6 “1}0029122 - l;. -55 "'li»a030752 - z} « 5 -16-0027661 - 7
71 «4.021249 <« 3 =52 | =4.022258 = 2 12| «4.020334 - 5
81 «4.,016186 0 =50 | =4.016853 = 2 «27] =4.015575 = &L
9| =4.012738 <~ 2 =53 | =4.013202 = 2 =52

| n3p a'D D
n E LE éﬁ% E AE E AB
1
2] =4.266256 ~86 -15 i
3] «4.116135 =31 «23 | =4.111167 <76 ~le111213 =60
L | =4.064633 =18 -4.062523 -38 «,.062550 =28
51 «4,041002 =11 -1, 040012 =21 =-1,,040027 =15
61 «4.,028,11 =« 4 «l,, 02778 =13 [, 02779 = 9
71 «4,020806 = L 020412 =10 -4.020419 = 5
g -ib0015892 - 2 "‘1}4015628 Ld 5 -ZPQ015632 - l‘,

give the difference in millionths of a rydberg between the

resent authors and

relativistic, radiative, and mass polarization corrections have been
applied to the experimental values,
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Table II. Oscillater Strengths for the 115-n1P

Series of Hel according to the Length,
Velocity and Acceleration Expression

n Present Trefftz Schiff and Hydrogen

Work et al. Pekeris
« 2701 «3113 2761
2 2752 2719 «2762 4162
02682 «2760
«073L .082L 0736
3 0728 «0720 0734 «0791
«0702 0732
«02G69 0303 .
L .0205 «0274 «0290
0282
+0151
5 0148 . «0139
o0141
«00863 » 00800
6 850 «00793 00780
813
00541
7 532 00481
509
.00361 _ ‘ '
8 355 .00318

350




